Школьные учебники / Презентации по предметам » Презентации » Другие презентации » Презентация к уроку алгебры по теме «Решение задач с помощью рациональных уравнений»(8 класс)

Презентация на тему: "Презентация к уроку алгебры по теме «Решение задач с помощью рациональных уравнений»(8 класс)"

Презентация к уроку алгебры по теме «Решение задач с помощью рациональных уравнений»(8 класс) - Скачать презентации бесплатно ☑ Презентации по предметам на school-textbook.com
Смотреть онлайн
Поделиться с друзьями:
Cкачать презентацию: Презентация к уроку алгебры по теме «Решение задач с помощью рациональных уравнений»(8 класс)

Презентация "Презентация к уроку алгебры по теме «Решение задач с помощью рациональных уравнений»(8 класс)" онлайн бесплатно или скачать на сайте электронных школьных учебников/презентаций school-textbook.com

Решение задач<br>с помощью<br>рациональных уравнений<br><br
1 слайд

Решение задач
с помощью
рациональных уравнений




Презентация к уроку алгебры
(8класс, учебник «Алгебра»
автор Ю.Н.Макарычев)
Выполнил учитель математики
МОУ «Рыбачьевская школа»
города Алушты
Бышук Петр Иванович



2021 г.

<br><br>Цели урока:<br>Научиться составлять дробно-рациона�
2 слайд



Цели урока:
Научиться составлять дробно-рациональные уравнения по условию задачи.
Уметь решать задачи с помощью дробно-рациональных уравнений.



Решите уравнение:<br><br>  а) х2 – 4х + 4 = 0<br>  Ответ: x1 = 2, x2 = 2<br
3 слайд

Решите уравнение:

а) х2 – 4х + 4 = 0
Ответ: x1 = 2, x2 = 2
б) 3х2 + 6 = 0
3х2 = -6
х2 = -2 Ответ: корней нет
в) x2 + 13х + 22 = 0
Ответ: x1 = -11, x2 = -2
г) 𝑦 2 𝑦−3 = 9 𝑦−3
ОДЗ: y≠3; 𝑦 2 =9
𝑦 1 =3 − не удовлетворяет ОДЗ, 𝒚 𝟐 =−𝟑 Ответ:−3

 Решить уравнение:  2 𝑥 2  𝑥 − 2 = 4𝑥 𝑥 − 2  .<br>Решение:<br>
4 слайд

Решить уравнение: 2 𝑥 2 𝑥 − 2 = 4𝑥 𝑥 − 2 .
Решение:
2 𝑥 2 𝑥−2 = 4𝑥 𝑥−2
Общий знаменатель (𝑥−2).
𝑥=0;
или 2𝑥−4=0
2 𝑥 2 ∙(𝑥−2) 𝑥−2 = 4𝑥∙(𝑥−2) 𝑥−2
∙(𝑥−2), при 𝑥−2≠0.
2 𝑥 2 =4𝑥
2 𝑥 2 −4𝑥=0
𝑥=2
Ответ: 𝑥=0.
Проверка:
При 𝑥=0, 0−2 =−2≠0.
При 𝑥=2, 2−2 =0.
𝑥(2𝑥−4)=0
Если среди найденных корней окажется
такое число, при котором знаменатель
дроби обращается в нуль, то такое
число корнем уравнения быть не может,
его называют посторонним корнем и в
ответ не включают.

Алгоритм решения дробных рациональных уравнений. <br>Чт
5 слайд

Алгоритм решения дробных рациональных уравнений.
Чтобы решить дробное рациональное уравнение, надо:
1) Разложить все знаменатели дробей, входящих в уравнение, на
множители.
2) Найти общий знаменатель этих дробей.
3) Умножить все слагаемые данного уравнения на общий
знаменатель.
4) Решить получившееся целое уравнение.
5) Из найденных корней исключить те, которые обращают в нуль
общий знаменатель данного уравнения.

 Решение задач с помощью дробных рациональных уравнен�
6 слайд

Решение задач с помощью дробных рациональных уравнений.
Этапы решения:

2) Этап формализации.
3) Этап решения уравнения.
4) Этап интерпретации.
1) Этап анализа условия задачи.

Задача 1. Числитель дроби на 3 меньше ее знаменателя. Су�
7 слайд

Задача 1. Числитель дроби на 3 меньше ее знаменателя. Сумма дроби и обратной ей дроби в 7,25 раза больше исходной дроби. Найти исходную дробь.

ч з −?
Ч -? на 3 <
З - ?
Ч З + З Ч в 7,25 р. > Ч З

 𝑥 2 = 90 42 = 15 7 <br>                                                                   Так
8 слайд

𝑥 2 = 90 42 = 15 7
Так как по условию задачи сумма дроби 𝒙−𝟑 𝒙 и обратной ей дроби 𝒙 𝒙−𝟑 в 𝟕,𝟐𝟓 раза больше исходной дроби, то можем составить уравнение:
Значит, исходная дробь имеет вид 𝒙−𝟑 𝒙 .
Решение:
Обозначим за 𝒙 – знаменатель дроби.
Тогда (𝒙−𝟑) – числитель этой дроби.
𝑥−3 𝑥 + 𝑥 𝑥−3 = 29 4 ∙ 𝑥−3 𝑥
7,25=7 25 100 =7 1 4 = 29 4
𝐷= (−150) 2 −4∙21∙225=
22500−18900=3600.
𝐷>0.
Общий знаменатель 4𝑥(𝑥−3)
𝑥 1,2 = −(−150)± 3600 2∙21 =
𝑥 1 = 210 42 =5;
150±60 42
5 – знаменатель, 5−3=2 – числитель.
𝑥−3 𝑥 + 𝑥 𝑥−3 =7,25∙ 𝑥−3 𝑥
4 𝑥−3 𝑥−3 +4 𝑥 2 =29(𝑥−3)(𝑥−3)
∙4𝑥(𝑥−3)
Ответ: 2 5 – исходная дробь.
4 𝑥 2 −24𝑥+36+4 𝑥 2 =29 𝑥 2 −174𝑥+261
21 𝑥 2 −150𝑥+225=0
⟹ 2 5 – исходная дробь.

Задача 2. Велосипедисту надо проехать 15 км. Он выехал на
9 слайд

Задача 2. Велосипедисту надо проехать 15 км. Он выехал на 15 минут позже намеченного срока и, чтобы приехать вовремя, увеличил скорость на 2 км/ч. С какой скоростью ехал велосипедист?

                                                            По условию задачи, вел
10 слайд

По условию задачи, велосипедист выехал на 𝟏𝟓 минут позже намеченного срока, или, что тоже самое, на 𝟏𝟓 𝟔𝟎 часа позже.
Тогда расстояние в 𝟏𝟓 км велосипедист проедет за 𝟏𝟓 𝒙 часов.
Составим уравнение:
Если бы велосипедист выехал вовремя, то его скорость была бы равна (𝒙−𝟐) км/ч.
Решение:
15∙4𝑥−15∙4∙(𝑥−2)=𝑥(𝑥−2)
15 60 = 1 4
𝐷= −2 2 −4∙1∙(−120)=
4+480=484.
𝐷>0.
Общий знаменатель 4𝑥(𝑥−2)
𝑥 1,2 = −𝑏± 𝐷 2𝑎
𝑥 1,2 = −(−2)± 484 2∙1
𝑥 2 = 2−22 2 = −20 2 =−10
𝑥 1 = 2+22 2 = 24 2 =12;
Ответ: 12 км/ч.
Пусть 𝒙 (км/ч) – скорость велосипедиста.

15 𝑥−2 − 15 𝑥 = 15 60
60𝑥−60𝑥+120= 𝑥 2 −2𝑥
15 𝑥−2 − 15 𝑥 = 1 4
И тогда расстояние в 𝟏𝟓 км он проехал бы за 𝟏𝟓 𝒙−𝟐 часов.

∙4𝑥(𝑥−2)
𝑥 2 −2𝑥−120=0

Задача 3. Моторная лодка прошла вниз по реке 14 км, а зате
11 слайд

Задача 3. Моторная лодка прошла вниз по реке 14 км, а затем 9 км против течения, затратив на весь путь 5 часов. Найти скорость течения реки, если скорость моторной лодки в стоячей воде равна 5 км/ч.












12 слайд


Известно, что моторная лодка прошла по течению реки 𝟏𝟒 км, а значит, затратила на это расстояние 𝟏𝟒 𝟓+𝒙 часов. Затем против течения лодка прошла 𝟗 км, затратив на это расстояние 𝟗 𝟓−𝒙 часов.
Общий знаменатель (5+𝑥)(5−𝑥)
14 5+𝑥 + 9 5−𝑥 =5
Решение:
14 5−𝑥 +9(5+𝑥)=5(5+𝑥)(5−𝑥)
𝑥 1 + 𝑥 2 =−1
𝑥 1 ∙ 𝑥 2 =−2
𝑥 1 =−1;
Ответ: 2 км/ч.
Тогда (𝟓+𝒙) км/ч скорость моторной лодки по течению реки и (𝟓−𝒙) км/ч скорость моторной лодки против течения.
Составим уравнение:
Пусть 𝒙 (км/ч) – скорость течения реки.
∙(5+𝑥)(5−𝑥)
70−14𝑥+45+9𝑥=125−5 𝑥 2
5 𝑥 2 −5𝑥−10=0
𝑥 2 −𝑥−2=0
𝑥 1 + 𝑥 2 =−𝑝
𝑥 1 𝑥 2 =𝑞
𝑥 2 =2

По условию известно, что на весь путь моторная лодка затратила 𝟓 часов.
𝐷 1 = −1 2 −4∙1∙(−2)=
1+8=9.
𝐷>0.

Решите задачи:<br><br>Скорость течения реки 2 км/ч, катер д�
13 слайд

Решите задачи:

Скорость течения реки 2 км/ч, катер двигался по течению 40 км, а против течения 6 км, затратив на весь путь 3 ч. Какова собственная скорость катера?


Решение:<br> <br> 40 х+2 + 6 х−2 =3<br> 40 х+2 + 6 х−2 =3      × (х+2)(х-2) <br><b
14 слайд

Решение:

40 х+2 + 6 х−2 =3
40 х+2 + 6 х−2 =3 × (х+2)(х-2)

40(х-2)+6(х+2)=3( х 2 −4)
40х-80+6х+12=3 х 2 −12
3 х 2 −46х+56=0
D=1444 , х 1 =14, х 2 = 4 3 не удовлетворяет условию задачи
Ответ: 14 км/ч

Вопросы:<br>Каковы этапы решения задач на составление д�
15 слайд

Вопросы:
Каковы этапы решения задач на составление дробного рационального уравнения ?
Как проводится интерпретация полученных решений?
В каких случаях полученные корни уравнения могут не удовлетворять условию задачи?

Домашнее задание:<br>п.26 (задача 1)<br>Решить №618 и №620<br>
16 слайд

Домашнее задание:
п.26 (задача 1)
Решить №618 и №620

Спасибо за урок!<br>
17 слайд

Спасибо за урок!

Используемые источники информации:<br><br>1. Ю.Н.Макарычев
18 слайд

Используемые источники информации:

1. Ю.Н.Макарычев «Алгебра» учебник для 8-го класса.
2. Материалы сайта http://videouroki.net

Отзывы по презентациям на сайте school-textbook.com "Презентация к уроку алгебры по теме «Решение задач с помощью рациональных уравнений»(8 класс)" (0)
Оставить отзыв
Прокомментировать

Путеводитель по миру знаний. Тем, кто хочет учиться.

Свяжитесь с нами